Search results for "error estimate"
showing 10 items of 22 documents
Fully reliable a posteriori error control for evolutionary problems
2015
Functional A Posteriori Error Estimates for Time-Periodic Parabolic Optimal Control Problems
2015
This article is devoted to the a posteriori error analysis of multiharmonic finite element approximations to distributed optimal control problems with time-periodic state equations of parabolic type. We derive a posteriori estimates of the functional type, which are easily computable and provide guaranteed upper bounds for the state and co-state errors as well as for the cost functional. These theoretical results are confirmed by several numerical tests that show high efficiency of the a posteriori error bounds. peerReviewed
On a posteriori error bounds for approximations of the generalized Stokes problem generated by the Uzawa algorithm
2012
In this paper, we derive computable a posteriori error bounds for approximations computed by the Uzawa algorithm for the generalized Stokes problem. We show that for each Uzawa iteration both the velocity error and the pressure error are bounded from above by a constant multiplied by the L2-norm of the divergence of the velocity. The derivation of the estimates essentially uses a posteriori estimates of the functional type for the Stokes problem. peerReviewed
Numerical methods for nonlinear inverse problems
1996
AbstractInverse problems of distributed parameter systems with applications to optimal control and identification are considered. Numerical methods and their numerical analysis for solving this kind of inverse problems are presented, main emphasis being on the estimates of the rate of convergence for various schemes. Finally, based on the given error estimates, a two-grid method and related algorithms are introduced, which can be used to solve nonlinear inverse problems effectively.
Reliable numerical solution of a class of nonlinear elliptic problems generated by the Poisson-Boltzmann equation
2020
We consider a class of nonlinear elliptic problems associated with models in biophysics, which are described by the Poisson-Boltzmann equation (PBE). We prove mathematical correctness of the problem, study a suitable class of approximations, and deduce guaranteed and fully computable bounds of approximation errors. The latter goal is achieved by means of the approach suggested in [S. Repin, A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comp., 69:481-500, 2000] for convex variational problems. Moreover, we establish the error identity, which defines the error measure natural for the considered class of problems and show that it yields computa…
Localized forms of the LBB condition and a posteriori estimates for incompressible media problems
2018
Abstract The inf–sup (or LBB) condition plays a crucial role in analysis of viscous flow problems and other problems related to incompressible media. In this paper, we deduce localized forms of this condition that contain a collection of local constants associated with subdomains instead of one global constant for the whole domain. Localized forms of the LBB inequality imply estimates of the distance to the set of divergence free fields. We use them and deduce fully computable bounds of the distance between approximate and exact solutions of boundary value problems arising in the theory of viscous incompressible fluids. The estimates are valid for approximations, which satisfy the incompres…
A posteriori estimates for a coupled piezoelectric model
2017
Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)
Estimates of the modeling error generated by homogenization of an elliptic boundary value problem
2016
Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)
Error Estimates for a Class of Elliptic Optimal Control Problems
2016
In this article, functional type a posteriori error estimates are presented for a certain class of optimal control problems with elliptic partial differential equation constraints. It is assumed that in the cost functional the state is measured in terms of the energy norm generated by the state equation. The functional a posteriori error estimates developed by Repin in the late 1990s are applied to estimate the cost function value from both sides without requiring the exact solution of the state equation. Moreover, a lower bound for the minimal cost functional value is derived. A meaningful error quantity coinciding with the gap between the cost functional values of an arbitrary admissible …
Residual a posteriori error estimation for frictional contact with Nitsche method
2023
We consider frictional contact problems in small strain elasticity discretized with finite elements and Nitsche method. Both bilateral and unilateral contact problems are taken into account, as well as both Tresca and Coulomb models for the friction. We derive residual a posteriori error estimates for each friction model, following [Chouly et al, IMA J. Numer. Anal. (38) 2018, pp. 921-954]. For the incomplete variant of Nitsche, we prove an upper bound for the dual norm of the residual, for Tresca and Coulomb friction, without any extra regularity and without a saturation assumption. Numerical experiments allow to assess the accuracy of the estimates and their interest for adaptive meshing …